
 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 1 / 34

Enterprise kanban

ɀ a case study of improving the full value chain

using Lean thinking

Executive summary

Very few companies start off improvements from a clean slate. They carry legacy:

people, technology, roles, culture, market shares, processes.. a simple proof they

have been successful at some point. So how do we improve a traditional company?

How do you get to a high trust culture? I find this question interesting. Refining it into

a question:

άLŦ ȅƻǳ ŀǊŜ ŀ ŎƻƳǇŀƴȅ ǘƘŀǘ Ƙŀǎ ōŜŜƴ ǎǳŎŎŜǎǎŦǳƭ ŀǘ ǎƻƳŜ stage: you have an existing

market share, you have heritage in both systems and people ς then how far can we

get by improving flow, step-by-step and adding skills before altering the

ƻǊƎŀƴƛȊŀǘƛƻƴŀƭ ǎǘǊǳŎǘǳǊŜǎ ōŜŎƻƳŜǎ ƴŜŎŜǎǎŀǊȅΚέ

This is our ƭŜŀǊƴƛƴƎΩǎ from improving the full value chain at a traditional company

using Enterprise Kanban.

What we found

We were able to reduce lead times by half over a period of 1,5 years. For released

products, 95% were reported value adding and useful.

Figure 1 Lead time for released product ideas aggregated per quarter.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 2 / 34

We use a minimum overhead

We work without traditional product owners or product managers. ²Ŝ ŘƻƴΩǘ ƘŀǾŜ a

project office. We rely on self organized teams, Enterprise Kanban, collaborative

design, Concepts and cooperation over function borders to make it happen.

A little bit of background

The company sells and produces weather services. It has been around for 100 years

and it might surprise you but it was actually one of the early pioneers in computing.

The flipside of this is the company hefty tech stack, ŘŀǘƛƴƎ ōŀŎƪ ǘƻ ǘƘŜ тлΩǎΦ ¢he

company currently supports and runs 80+ systems.

The company employs 650 people in total, with roughly 100 of them being involved

in new product development. Products are sold business to business.

Products are mainly s

They are organized into two main departments: Marketing and IT. Marketing is split

into three units, each targeting a specific market segment.

IT is divided into three functions:

¶ Development (software development teams, loosely organized by systems)

¶ Change management (pushes changes to staging & production, responsible

for system tests for releases)

¶ Operations (performs infrastructure work and live monitoring)

Market unit A

Market unit B

Market unit C

Marketing

Development Change

management
Operations

IT

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 3 / 34

Why get started?

Faster time to market to stay competitive

Openness of data and deregulations has created new competitors. Being new they

ŘƻƴΩǘ ŎŀǊǊȅ ǘŜŎƘƴƻƭƻƎƛŎŀƭ ƻǊ ƻǊƎŀƴƛȊŀǘƛƻƴ ƭŜƎŀŎȅ. Thus they are fast moving,

aggressive and provide stiff competition.

Our key challenge was to improve our ability to ship products faster, crucial to stay as

a competitive partner on the market.

Experience: Big projects that never seem to finish

Never happened to you right? The company had just stopped an earlier project,

aimed at renewing the product platform, which had been running well over 1.5 year

and still was far from finished. The bulk of current development efforts aimed at

solving this once and for all using new technology, better architecture and agile

teams.

Ȱ) requested a suit and all I got was a lousy t-ÓÈÉÒÔȱ

This is an actual quote from a marketing manager describing his view on product

development. It was hard for marketing and development to agree on the right level

of communication. Either the make or break information such as what was unique in

a product idea ǿŀǎƴΩǘ ŜȄǇƭƛŎƛǘƭȅ ŎƻƳƳǳƴƛŎŀǘŜŘς or - if it was, in order to make the

deadlines, teams would abandon these uniqueness in favor of shipping the product

in time. Either way, the upside of the product got lost.

7ÈÅÒÅȭÓ ÍÙ ÐÒÏÄÕÃÔ ÉÄÅÁȩ

It might seem odd, but no one really knew the exact state of current products ideas.

These product ideas could exist partially in several Scrum teams product backlogs

and also could be in different stage of testing at the same time. Adding an enterprise

kanban board to see the true progress of new product ideas was a natural step. This

would drastically simplify for marketing to see what stage the product idea was in.

Another benefit of our enterprise kanban board was to provide a shared language for

all functions to discuss progress, and enable us to get a shared focus when needed.

IT

??

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 4 / 34

Selecting the right language in communication between business and development is

ǘǊƛŎƪȅΦ CƻǊ ŜȄŀƳǇƭŜΥ ǎƘƻǳƭŘ ǿŜ ŎƘƻƻǎŜ ŀ ōǳǎƛƴŜǎǎ ŦǊƛŜƴŘƭȅ ǾƛǎƛƻƴŀǊȅ ƭŀƴƎǳŀƎŜ όάƘŜǊŜ

are the three key areas our product needs to excel at: usability, reliability, pricingΦΦέύ

and let the developers iron out the details? Or, should we opt for a development

ŦǊƛŜƴŘƭȅ ƭŀƴƎǳŀƎŜ όάǘƘŜ ŀŎŎŜǇǘŀƴŎŜ ŎǊƛǘŜǊƛŀ ŦƻǊ ŦŜŀǘǳǊŜ ΨƳŀƪƛƴƎ ŀ ŎŀƭƭΩ ƛǎΦΦ έύΚ The

degree of product knowledge in the development teams and the degree of slicing

skill in business sets this level. We used Concepts to help bridge this gap allowing the

level of details to adapt to the knowledge in the business/team relation.

7ÏÕÌÄÎȭÔ Á ÔÒÁÄÉÔÉÏÎÁÌ ÐÒÏÊÅÃÔ ÏÆÆÉÃÅ ÓÏÌÖÅ ÔÈÅ ÐÒÏÂÌÅÍȩ

A traditional way to overcome knowing the state of things is to add a middle man to

bridge the gap between customer and IT ς product owners or project management.

But by doing so we have also insert two new handovers, increasing the chance the

important information ƎŜǘΩǎ lost or distorted. This can be seen as a consequence of

inserting roles to handle details where as the original problem was finding the right

level of language that enables business and developers develop a shared

understanding of what to develop.

Another challenge with traditional project management is that communication of

progress is often made towards plan (using gated milestones). This is not the same as

actual progress of the product. This can produce a misleading feeling of wellbeing

and being on track, only to get nasty surprises towards the end - pushing the delivery

date by a half a year or so. This is what agile teams long have known and helps us

address.

)ÔȭÓ ÁÂÏÕÔ selling the product too

A product becomes little worth unless we find ways to tell the market about its

existence, sell it, integrate it, train customers in its use and support it. Without

integrating with ǘƘŜ ǎǘŜǇǎ ƻǳǘǎƛŘŜ ǎƻŦǘǿŀǊŜ ǿŜ ǿƻƴΩǘ ōǊƛƴƎ ƛƴ ǘƘŜ ƳƻƴŜȅΦ {ƻ ǿŜ ƴŜŜŘ

to look beyond development, accept existence of functions (or become magnificent

multitaskers) and find ways to interact over the full value stream.

 Idea

Product idea

(still abstract)

Each sprint backlog items needs to

be small and concrete

How do we bridge this gap

in multi team scenarios?

Affects a complex

product/org

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 5 / 34

ȰI ÆÅÅÌ ÌÉËÅ)ȭÍ ÊÕÓÔ Á ÓÍÁÌÌ ÃÏÇ ÉÎ the machineryȱ

Developers felt like they merely was a small cog in the machinery and lacked an

overall picture of what they were creating. We wanted to raise teams ability to take

higher responsibility on the overall results (product idea success).

How we got going

Where to put the board

The kanban board ties together four functions: marketing, development, change

management and operations. It visualizes flow from product idea creation to

customer use. We decided to put the board in a corridor outside the development

teams, through which most of the involved functions pass once in a while.

After putting up the board the next step was to fill it with ongoing and upcoming

product ideas. Mapping current sprint items to ongoing product ideas was a fun

challenge that took some conversations to get right. But by the end of the day we got

them up.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 6 / 34

Figure 2 One of our scrum masters mapping their sprint backlog items to what product idea they
belong to on the overall kanban board. A non trivial exercise.

Goodbye sprints, welcome flow

We wanted to refocus teams on flow, rather than sprints. Why?

¶ To shift focus on finishing product ideas, over completing team increments

¶ To allow communication across functions to circle on product ideas, less on

process artifacts.

¶ To enable us to work on product ideas until done with quality, not shipped

because sprint has ended

¶ To find bottlenecks and eliminate bottlenecks in end to end flow

¶ To eliminate wait time

At first development teams were cautious about this change, in their view sprints

worked. But they were also keen to get a better view on what they were working on

(less a Ψcog in the machineryΩ) plus they were curious and so they agreed to give it a

try.

Removing sprints - what we learned

After a couple of months a few development teams reintroduced άƭƛƎƘǘέ sprint

planning. They lacked a team overview of what was being worked on, and wanted to

use combined skills when splitting complex work. Lǘ ǿŀǎ Ψƭight sprint planningΩ since it

excluded estimating how much they could fit into sprints (we worked with

continuous flow).

How we approached product ownership

Traditionally, product management or product owners ς are responsible for product

decisions. We took a slightly different approach. We wanted the passionate people

behind the idea to run with it, regardless of role. But in order to do so we requested

two things:

1. You run with the idea all the way to working client.

2. ά¸ƻǳ ǿŀƴǘ ƛǘ ς ȅƻǳ ƳŀƪŜ ƛǘ ƘŀǇǇŜƴέ ς there is no handover

We called this approach Concepts. Concepts helped us to:

¶ Keep the integrity of the original idea through all phases of

development

¶ Get a feedback loop from client use - post release

¶ Make sure business owners arrived prepared to the conversation

with developers

¶ Share the big picture across multiple teams

¶ Stop ideas early which no one really cared enough for

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 7 / 34

¶ Decentralize risk mitigation. Concepts allowed us to empower any

team or downstream function to make tradeoff decisions without

asking for permission

To learn more see: Introduction to Concepts.

HÏ× ×Å ÈÁÎÄÌÅÄ ÔÈÅ ȰÏÖÅÒÁÌÌ ÅØÐÅÒÉÅÎÃÅȱ

It is fair to say that the overall experience was handled from a market segment

perspective. Each market department maintained their product portfolio and knew

what product ideas that were under development. If they discovered that an effort

was required to improve the product portfolio targeting this market segment, they

would either:

¶ Insert a new concept (or)

¶ Ask an existing concept owner to make adjustments necessary to improve

the portfolio product experience.

An example of such efforts was performance improvements.

Learning to prepare good inflow

In the beginning we kept candidates for new product ideas on a wall next to the

kanban board. Since we used Concepts, each product idea was represented by an A3.

Figure 3 Our wall with candidates for new products

The first time I reviewed them, I noticed 40% did not contain the specified

information we had agreed necessary to engage in a conversation with development.

For example impact would frequently be missing. To fix this we added a policy where

http://www.crisp.se/concepts

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 8 / 34

we requested that the team leads screened incoming Concepts before they entered

prioritization and remind the creator of any missing information. While this was

partly expected since we were still early in the learning curve, one ŎŀƴΩǘ ǎǘƻǇ wonder

what would happen if we had developed and released these product ideas.

How we approached ROI and budgeting

A common scenario is to do a return on investment calculation (ROI) for new

development projects. Costs are generally estimated by asking each function to

predict number of man hours involved. This is used to decide if this is a profitable

investment and sometimes to figure out how much of the IT budget that this project

will consume (and by whom).

We have to make calls on what to develop. So we do a value vs effort judgment one

way or the other.. The problem happens when our effort is largely focused on

estimating cost rather than value. The value of the product idea normally carries

higher uncertainty than the cost. Therefore, spending large amounts of effort

estimating the cost side of the equation is not well invested effort (you are

addressing the wrong uncertainty).

Try a simple thought experiment: how many customers will buy your product after

ƛǘΩǎ ōŜŜƴ ǊŜƭŜŀǎŜŘΚ Estimate the range for the value comparing worst case with best.

Then estimate the range of costs (hint: Standish group estimates overrun in costs in

software projects to be 240%). Compare the ranges and see which one that carries

the most uncertainty. Now ask yourself how much of your efforts are directed to

each.

Figure 4 The uncertainty imbalance. The biggest uncertainty is on the value side - will the product fly?
Yet we invest the most of our effort during early product development in estimating the effort/cost.

Value

Cost

Effort spent addressing it

Amount of uncertainty

?

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 9 / 34

We wanted to shift emphasis to reducing value uncertainty. So we simplified our

return on investment calls (what to develop) using a set of assumptions:

¶ Uncertainty of value is best discovered by shipping the product idea and

trying it on the market

¶ The cost, of which the headcount is a main component, remains fairly

stable over time. Changes do happen, but they are regularly a rare event.

¶ Time through the system = effort consumed. Use lead time for product idea

to learn how much effort it has consumed.

¶ It is smarter to validate effort consumption throughout or post

development than pre development.

¶ 9ƴǎǳǊƛƴƎ ǘƘŀǘ ŜŀŎƘ ƳŀǊƪŜǘƛƴƎ ŘŜǇŀǊǘƳŜƴǘ ƎŜǘΩǎ ǘƘŜƛǊ ŦŀƛǊ ǎƘŀǊŜ ƻŦ ǘƘŜ

development effort, matters. This can be guaranteed using the right inflow

and WIP limits.

Funding of IT was solved by letting each marketing department fund IT with an equal

amount (1/3rd each). In return, they would be guaranteed to get every third product

idea. In this way, the important decision each marketing department needed to do

was figure out what the next product idea most likely to succeed on the market.

Figure 5 A fixed WIP combined with the decision rule ƻŦ άŜŀŎƘ ƳŀǊƪŜǘƛƴƎ ŘŜǇŀǊǘƳŜƴǘ Ǝƻǘ ŜǾŜǊȅ third
product idea made sure each department got the portion of development effort they paid for.

The default decision rule of άŜǾŜǊȅ ǘƘƛǊŘ ǇǊƻŘǳŎǘ ƛŘŜŀέ ŎƻǳƭŘ ōŜ ƻǾŜǊǊǳƭŜŘΣ ƛŦ

marketing department heads agreed. This would typically happen if they recognized

that a certain product idea or improvement gained the company as a whole. Heads of

marketing met in front of the board every 14th day to review priorities and make such

calls if needed.

One example ƻŦ ŀ ǇǊƛƻǊƛǘƛȊŀǘƛƻƴ Ŏŀƭƭ ǘƘŀǘ ƻǾŜǊǊǳƭŜŘ άŜǾŜǊȅ ǘƘƛǊŘέ ǿas to pull in a

performance improvement that gained all departments.

Product
ideas

Market
unit A

Market
unit B

Market
unit C

Ready
to use

Flow under
WIP control

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 10 / 34

Enterprise kanban - walking the board

A brief explanation of each step

Product ideas Each marketing department is responsible for keeping two product ideas
prepared here. For a product idea to exist on the board, it had to have a
prepared Concept.

Next These are the next three product ideas the company has decided to pull
in. This is also where WIP begins and lead time measurements start. From
this moment the marketing department cannot insert new features or
make major changes to the feature scope. They do have the right to
ŎŀƴŎŜƭ ǘƘŜ ǇǊƻŘǳŎǘ ƛŘŜŀ ŀƭƭ ǘƻƎŜǘƘŜǊΣ ƛƴ ǘƘƛǎ ŎŀǎŜ ƛǘ ƳƻǾŜǎ ǘƻ άƻƘ ŎǊŀǇέ
section at the end of the board.

The manager of each marketing department met up in front of the board
every 14:th day to review prioritization. After a while our head of
development also joined this conversation. This proved to be an ample
opportunity to discuss and agree why an investment in technical debt
would be beneficial now or later.

Not all prioritization decision needs to be synced between the heads of
marketing. In our case each marketing department funds IT with 1/3rd of
its budget. Given this, our default decision rule was every third product
idea would be pulled from your marketing department. This default rule
could be overruled if all heads of marketing agreed. This would typically
happen for product ideas where the company as a whole benefited or key
technical debt.

Ready for dev Solution options under creation. At least one representative from each
team participates. See more under άthe collaborative design sessionέ.

Dev Product idea under development. Each column indicates roughly which
team that is moving it forward right now. Before the product idea moves
to system test, teams and concept owner must agree that the product
ŀƴŘ ƛǘΩǎ ŦŜŀǘǳǊŜǎ ǊŜǇǊŜǎŜƴǘǎ ŀ ǎŜƭƭŀōƭŜ ǇǊƻŘǳŎǘΦ

System test Basic verification product works from a system perspective Integration
and deployment on production like platform, maintainability, data and

Product
ideas

Ready for
dev

Dev System
Test[1] [5]

In prog. Done Data
service

Graphics Portal Cust. Popular
Market
unit A

Market
unit B

Market
unit C

Next

[3]

Ready
for

test

Testing

Production

Release
ready for

prod.

Custom
adapt.

Acc
test

Ready
to use

Cust.
usage

Oh crap!

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 11 / 34

stability over time verified.

Production The release is moved into production. Customer specific branding and
configurations added, if necessary.

Acc. test Validation by concept owner of final experience.

Ready to use Ready to be taken into use by customer.

Customer usage Feedback from customer. If they liked it and uses it (=άǇƻǇǳƭŀǊέύ if it
ŘƛŘƴΩǘ ǿƻǊƪ ƻǳǘ ό=άƻƘ ŎǊŀǇΗέύ

Kanban standup - sharing progress and addressing flow

blockers

We decided on using a regular meeting cadence in front of the board, 2 times a week

we would gather key stakeholders and have a 15 minute standup. The purpose was

to allow stakeholders to get an overview on the state the product ideas and to

address impediments blocking progress.

Who comes?

At first, we asked for a (minimum) representation by each function at the standup.

That made up three from marketing (one per function), six from development (one

per team plus the head of engineering), one from change management and one from

operations). {ǇŜŎƛŀƭƛǎǘǎ ǿƻǳƭŘ ƎŜǘ ǇǳƭƭŜŘ ƛƴ άƻƴ ƴŜŜŘέ ōŀǎƛǎΦ hǳǊ ŦŀŎƛƭƛǘŀǘƻǊ at these

Devteam (x4)

Marketing (x3)

Every time

Every time

Marketing

Devteam Change

management

Sysadmin

Change
Mgmnt team

If active product
Sysadmin
team

2 times/week

òWalk the flowò

On demand

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 12 / 34

meetings and the owner of the enterprise kanban board was our head of

engineering.

Our agenda:

1. Walk the flow. Find out if there is any blocker preventing progress. We

walked this from the back of the board forward.

2. If a blocker is found: Ask who are the right people to address it and assign

one responsible for each. Avoid discussing the problem at the standup, do

this right after.

3. Before ending the meeting: Recap important points (for example who owns

each blocking event)

4. Officially end the meeting (ά¢Ƙŀƴƪ ȅƻǳ ŜǾŜǊȅƻƴŜ ς we are ŘƻƴŜ ŦƻǊ ǘƻŘŀȅέύ

It is key to keep these meeting short. We would have 10-20 people in front of the

board from different functions at these meetings. We learned to arrive prepared and

ǎǘǳŘȅ ǘƘŜ ōƻŀǊŘ ƛƴ ŀŘǾŀƴŎŜ ƛƴǎǘŜŀŘ ƻŦ ǘǊƛǇǇƛƴƎ ƻǾŜǊ ŀǘ ǘƘŜ ǘȅǇƛŎŀƭ άƻh, what was this

about ŀƎŀƛƴΦΦέ ǿƛǘƘ ǇŜƻǇƭŜ ǇŀǘƛŜƴǘƭȅ ǿŀƛǘƛƴƎΦ I believe we can say it worked, since we

still use this twice a week standup.

Kanban standup ɀwhat we learned

Operations remarked after a while that there rarely was an item on the board that

required their input, so we simplified attendance to: άIf you have something of

interest on the board you come to the standup.έ ¢Ƙŀǘ ǿƻǊƪŜŘ better. Using this

approach Concepts owners (marketing people who had active product ideas under

development) would always be there, one representative from each development

team (if they were working on an active concept) would be there. We would pull in

specialized resources such as sysadmins or outside teams on need basis.

The importance of the overall blocker section

We learned early on, that a few key impediments could not be tied directly to single

product ideas. Some spanned many. To ensure we acted on them, we added a

section on top of the board, where each development team could signal if they were

being impeded by some factor.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 13 / 34

Figure 6 The section where general impediments blocking progress where visible

While it may seem trivial, it sent an important signal that we did care about blockers

and we ǿŜǊŜƴΩǘ ƎƻƛƴƎ ǘƻ ǇǊƻŎŜŜŘ ǳƴǘƛƭ ǿŜ ƘŀŘ ŦƛȄŜŘ ǘƘŜƳΦ It was an important

leadership signal showing these things mattered.

 It was frequently used in early during our kanban implementation, but as we solved

a couple of the key blocking issues, it got less frequently used. Currently it is rarely

used. It is still on the board mainly to ensure teams that if they raise a serious

concern, they will be heard. This section is actually an unfiltered communication

channel all the way to both head of marketing and head of development.

,ÅÁÒÎÉÎÇȭÓ - wÈÙ ×ÅÒÅÎȭÔ ÔÈÅÓÅ ÔÈÉÎÇÓ ÓÏÌÖÅÄ ÂÅÆÏÒÅȩ

¸ƻǳ ƳƛƎƘǘ ǿƻƴŘŜǊ ǿƘȅ ǎƻƳŜ ƛŦ ǘƘŜǎŜ ōƭƻŎƪŜǊǎ ǿŜǊŜƴΩǘ ŀŘŘǊŜǎǎŜŘ ōŜŦƻǊŜΚ ²Ŝ ƘŀŘ

been using Scrum and development teams for some time. A simple explanation is

that each of these problems was too big for a single team to solve. All required

cooperation across teams, sometimes functions to address. Now we were able to

focus across functions to address them.

How the team decided what to work on

A question that surfaced ŜŀǊƭȅ ǿŀǎ άǿƘŀǘ ǎƘƻǳƭŘ ǿŜ Řƻ ŀōƻǳǘ ǿƻǊƪ ǘƘŜ ǘŜŀƳǎ ŦŀŎŜ

ōǳǘ ǘƘŀǘ ƛǎ ƴƻǘ ƻƴ ǘƘŜ ƪŀƴōŀƴ ōƻŀǊŘΚέ ²Ŝ ŎƭŀǊƛŦƛŜŘ ǘƻ ǘƘŜ ǘŜŀƳǎ ǘƘŀǘ ǿŜ ǿŀƴǘŜŘ

them to keep visualizing what they were working on and gave them a decision rule to

organize their work around.

¶ 50% of work should be product idea oriented

¶ 20% would be improvements, (if there was none from the enterprise board

this was left to team to decide)

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 14 / 34

¶ 20% on bug fixing

¶ 10% on quick fixes, answering questions etc.

Each team was given the mandate to make the call if to pick up work or not when

approached by external parties as long they kept these rough guidelines.

How we kept track of spent effort

On top of the kanban board we kept a small section that was updated and reviewed

at the monthly retro. This section was updated by the teams in the presence of the IT

managers. Each team was asked to give their picture of their effort allocation by

manually changing the size of the columns for each category. If a big diversion was

discovered this would lead to questions by the IT manager what had caused this and

potential action points.

These bars was visualized on top of the kanban board, see the highlighted area

below.

This proved to be a remarkably simple mechanism allowing us to track extraordinary

events as well if teams had been pushed in the wrong direction for political or

Front
end team

Back
end team

10 %

20 % 20 %

50 %
Target

5%
10 %

20 %

65 %

10%

20 %

10 %

50 %

Feat.

Tech. inv

Bug + maint

Quick fix

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 15 / 34

personal reasons. This mechanism replaced time reporting as a tool to learn where

άǘŜŀƳ ƘŀŘ ǎǇŜƴǘ ǘƛƳŜέΦ

How we approached collaborative design

²ƘŜƴ ŀ ƴŜǿ ǇǊƻŘǳŎǘ ƛŘŜŀ ŎƻƳŜǎ ǘƻ ƭƛƎƘǘ ƛǘΩǎ ƛƳǇƻǊǘŀƴǘ ǘƻ ƭƻƻƪ ŀǘ ƛǘ ŦǊƻƳ ǎŜǊƛŜǎ ƻŦ

perspectives. How it affects architectural constraints, how architecture might affect

the integrity of the idea, what type what solutions options exist, what parts need to

fit together before we have something valuable, what timeframe should the design

be optimized for.

We set up collaborative design to achieve three things

¶ Leverage of brainpower. If we got multiple minds to look at a problem we

would get multiple perspectives quickly. No need to wait for an iteration or

two to find out ƛŦ ƛǘΩǎ doable or not.

¶ AǾƻƛŘ ǘƘŜ ŦŜŜƭƛƴƎ ǘƘŀǘ ǘŜŀƳǎ ǿƘŜǊŜ ƻƴƭȅ άŀ ǎƳŀƭƭ ŎƻƎ ƛƴ ǘƘŜ ƳŀŎƘƛƴŜǊȅέΦ

Since one member of each team participated they would bring back an

understanding of the problem addressed plus the reasoning behind design

decisions to their team.

¶ Get a Ψcreative heightΩ. Avoid turning breakdown a lame exercise of fitting

the product idea into the existing architecture. Our goal was to always

deliver two solutions to any problem.

The workflow

A product idea is written down by the owner of the idea as a Concept. This then

(hopefully..) get prioritized by the head of each marketing department. It is then

pulled into collaborative design which happens on demand.

Collaborative
design

Enterprise kanban board

Dev teams

Change
management

Sys admin

Prioritze
top 3 product
ideas

Product
idea

Concept
(A3)

ClientRelease

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 16 / 34

Who attends?

Calling the meeting and running the show would be was done by a facilitator. He or

she was generally one of the developments teamΩǎ ǎŎǊǳƳ ƳŀǎǘŜǊǎ who received

specific coaching for the job. The facilitator would call the meeting and make sure

one developer from each team participated. If required, specialist resources would

be pulled in to this session, for example if integration was required with outside

teams.

Collaborative design session followed the agenda:

1. Paint the picture ς the concept owner describes the idea, walking through

the concept

2. Discover ς Carve out 2-4 solution ideas

3. Explore ς Dive deeper down each solution idea

4. Select ς Select two options to move forward with

LǘΩǎ ǘƘŜ ŦŀŎƛƭƛǘŀǘƻǊΩǎ ǊƻƭŜ ǘƻ ƳƻǾŜ the group between these modes, selecting the

balance between diving in to detail and exploring options.

Good facilitation is key

The job of the facilitator is to:

¶ Make sure multiple solution options were explored

¶ Bring back discussions deterring into detail

¶ Explore ideas thrown out unintentionally but lost during conversations,

¶ PǊƻǾƻƪŜ ǘƘŜ ǘŜŀƳ ƛŦ ƴŜŎŜǎǎŀǊȅ ǘƻ ǎǘƛƳǳƭŀǘŜ ǘƘƛƴƪƛƴƎ ŦǊƻƳ ƻǘƘŜǊ ŀƴƎƭŜǎΦ ά{ƻ

ǘƘƛǎ ƛǎ ŀ ǾŀƭƛŘ ǎƻƭǳǘƛƻƴΣ ōǳǘ ǿƘŀǘ ǿƻǳƭŘ ǘƘŜ ŘƛǊǘ ǎƛƳǇƭŜ ǎƻƭǳǘƛƻƴ ƭƻƻƪ ƭƛƪŜΚέ

One of the most important tasks for the facilitator is to transcribe the discussion.

Ideas are many times thrown out and unintentionally lost. Transcribing enables the

participants to recap earlier conversations and solution options.

Facilitator

Concept owner

Expert

(pull in)

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 17 / 34

Figure 7 Completing a collaborative design session. Solution ideas transcribed on the whiteboard.

Collaborative design starts with picking a balanced team

If the crowd is too homogenous, few ideas emerge. Facilitation starts by picking a set

of personalities balancing each other. The goal is to see different angles and enable

the team to build on each ƻǘƘŜǊΩǎ ƛŘŜŀǎ. Being part of these sessions was focused

work both mentally and emotionally. Membership rotated, and it was the

ŦŀŎƛƭƛǘŀǘƻǊΩǎ Ƨƻō ǘƻ ƪŜŜǇ ŀ ōŀƭŀƴŎŜd team.

Collaborative design ɀ what we learned

In a few examples we let a senior developer and the ŎƻƴŎŜǇǘ ƻǿƴŜǊ άpair upέ and

walk through the idea, before the collaborative design session. ¢Ƙŀǘ ŘƛŘƴΩǘ turn out

the way we expected..

The participants felt that no matter how the asked, ƻƴŜ ǎƻƭǳǘƛƻƴ ǿŀǎ άǇǊŜ ŘŜŎƛŘŜŘέΦ

One participator actually said it out loud: άǿƘȅ ŀƳ L ƘŜǊŜ to give you ideas? It seems

you already have decided in the ǎƻƭǳǘƛƻƴΦΦέ. So we learned to bring in fresh problem

statements rather than half finished solutions.

How we did continuous improvement

Learning from outcome

Continuous improvement can be run in many ways. We decided the most important

information came from the usage (or in worst case: none usage..) of our products. So

we made this information the foundation of our improvements.

We started by visualized the outcome of our development at the end of the kanban

board.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 18 / 34

If the customer did not like the product idea it ǿŀǎ Ǉǳǘ ƛƴǘƻ ǘƘŜ άƻƘ ŎǊŀǇέ ŀǊŜŀΦ ±ƛŎŜ

ǾŜǊǎŀ ƛŦ ǘƘŜ ŎǳǎǘƻƳŜǊ ƭƛƪŜŘ ƛǘ ŀƴŘ ƛǘ ōŜŎŀƳŜ ŦǊŜǉǳŜƴǘƭȅ ǳǎŜŘ όάǇƻǇǳƭŀǊέύΦ

LŦ ŀ άƻƘ ŎǊŀǇέ ŜǾŜƴǘ ƻŎŎǳǊǊŜŘΣ ǿŜ ǿƻǳƭŘ ōǊƛƴƎ ǘƻƎŜǘƘŜǊ ǘƘŜ ŎƻƴŎŜǇǘ ƻǿƴŜǊΤ ǘƘŜ ǘŜŀƳǎ

involved and facilitator and do a root cause analysis together. This then became

input to changes we needed to do.

Adding a company demo

One of key changes we did when we started Enterprise kanban was to replace sprint

ŘŜƳƻΩǎ ǿƛǘƘ ŀ ŎƻƳǇŀƴȅ ŘŜƳƻΣ ǿƘƛŎƘ ǿŜ Ǌŀƴ ŀ Řŀȅ ōŜŦƻǊŜ ǊŜƭŜŀǎŜΦ !ǘ this event new

product ideas would be demonstrated by the teams, allowing people throughout the

company to see what was going out.

But we included a second step. Based on the previous release, marketing would

demonstrate how products where being in used and share customer feedback and

comments. This was much appreciated by development teams and gave engineers

the opportunity to learn about how the products where used by the clients.

Company demo vs. sprint demo ɀ what we learned

At the previous sprint demo development teams normally would demonstrate

components of the product idea - this made conversations at these events slightly

development focused. When we shifted to company demo - demonstrating working

product ideas conversations shifted towards market and product use of new

products. {ǇǊƛƴǘ ŘŜƳƻΩǎ were replaced by continuous demonstrations, as concept

owners continuously reviews and exchange feedback on ongoing work with

development teams.

How we chose what to measure

We decided to measure two things: Lead time (including its components) and

ǇŜǊŎŜƴǘŀƎŜ ƻŦ ǎǘƻǊƛŜǎ ǊŜŀŎƘƛƴƎ ά/ǳǎǘƻƳŜǊ ǇƻǇǳƭŀǊέ ǎǘŀƎŜ ǾǎΦ άhƘ ŎǊŀǇέ όǎŜŜ ŀōƻǾŜύΦ

[ŜŀŘ ǘƛƳŜ ƳŜŀǎǳǊŜƳŜƴǘ ǎǘŀǊǘǎ ǿƘŜƴ ǘƘŜ ǇǊƻŘǳŎǘ ƛŘŜŀ ŜƴǘŜǊǎ ²Lt όάbŜȄǘ ŎƻƭǳƳƴ ŦƻǊ

ǳǎύ ŀƴŘ ǎǘƻǇǎ ǿƘŜƴ ŎǳǎǘƻƳŜǊ Ŏŀƴ ǳǎŜ ƛǘ όάwŜŀŘȅ ǘƻ ǳǎŜέύΦ

Product
ideas

Ready for
dev

Dev System
Test[1] [5]

In prog. Done Data
service

Graphics Portal Cust. Popular
Market
unit A

Market
unit B

Market
unit C

Prio

[3]

Ready
for

test

Testing

Production

Release
ready for

prod.

Custom
adapt.

Acc
test

Ready
to use

Cust.
usage

Oh crap!

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 19 / 34

Together, these gave us indicators over time if we were doing the right thing and

how we were improving on making that happen (lead time).

Act on information ɀ ÄÏÎȭÔ ÓÔÏÒÅ ÉÔ

We complimented measurements with a number of visual indicators. Examples

include blocking events, queues, age of product idea and rough estimation of where

ǘŜŀƳ ǎǇŜƴǘ ǘƘŜƛǊ Ƴŀƛƴ ŜŦŦƻǊǘ όǎŜŜ άHow we kept track of spent effortέύΦ

 These where designed to help management and teams enter conversations and take

ŀŎǘƛƻƴǎΦ ¢ƘŜ ǳǇǎƛŘŜ ƻŦ ŀŎǘƛƴƎ ƻƴ ƛǘ άǊƛƎƘǘ ŀǿŀȅέ ƛǎ ǘƘŜ ƛƴŦƻǊƳŀǘƛƻƴ ŀƴŘ chain of events

is ŦǊŜǎƘ ƛƴ ǇŜƻǇƭŜΩǎ ƳƛƴŘǎΦ LŦ ȅƻǳ ǘǊȅ ǘƻ ǇǊƻōƭŜƳ ǎƻƭǾŜ ǘƘƛǎ ŀ ƳƻƴǘƘ ƭŀǘŜǊ ǘƘŜ ŎƘŀƛƴ ƻŦ

events can be hard to recall.

A monthly improvement pulse in front of the kanban board

Once a month, the manager of the IT department (our kanban board owner) pulled

together one representative from each development team for a quick retrospective.

We performed ǘƘƛǎ ǎǘŀƴŘƛƴƎ ƛƴ ŦǊƻƴǘ ƻŦ ǘƘŜ ōƻŀǊŘ ŀǎƪƛƴƎ άǿƘŀǘ ǎƘƻǳƭŘ ōŜ

ƛƳǇǊƻǾŜŘΚέΦ ¢ƘŜ ǊŜǘǊƻ ƛǎ ǘȅǇƛŎŀƭƭȅ ǾŜǊȅ ǉǳƛŎƪΣ ǘŀƪŜ мр ƳƛƴǳǘŜǎ, and changes to the

board and process are applied their and then. The agenda followed:

¶ Review measurements (lead time, customer usage)

¶ Review board (is it clear, easy to overview, useful)

¶ Apply change

Examples for changes introduced by the improvement pulse have been, changing the

templates for the kanban cards, inserting, removing and reinserting swim lanes,

refined lead time measurements.

Monthly improvement pulse ɀ lesson learned

One observation we did was that team/or -major blockers rarely where discussed at

these events. Why? They had already been addressed. If a team or product idea got

blocked for some reason (performance issues, release issues etc), these issues had

Product
ideas

Ready for
dev

Dev System
Test[1] [5]

In prog. Done Data
service

Graphics Portal Cust. Popular

Next

[3]

Ready
for

test

Testing

Production

Release
ready for

prod.

Custom
adapt.

Acc
test

Ready
to use

Cust.
usage

Oh crap!

Lead time

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 20 / 34

already gotten attention and where being solved. Thus we rarely spent time

discussing fixing blocking issues at our monthly improvement pulse.

When can I get my stuff?

Since weather business is highly seasonal (doh!) J - it matters for marketing to know

when something will be done. The most important decision point is to know when to

feed in a product idea in order to get it out before season begins.

There was a second reason why it mattered for us to know the decision points for

new products. We had examples of very late changes pushed into releases and

jeopardizing quality. We needed to find a way to agree between marketing,

development and change management when decision points really were. Until we

did, it would always be up to each person to figure this out, a complex call no single

individual could successfully make on their own.

Before we had relied on story point estimations and sprints to give us this data, but

the predictions had been pretty poor. It is quite natural as in our case sprints

consumed a smaller portion of the total lead time.

How we found our true capability ɀ time to deliver

We sampled the lead time for the latest released product ideas and figured out

under what ceiling a majority of observations would fall. We chose a ceiling under

which roughly 95% of events would be below ς often referred to as the upper control

limit (UCL).

Figure 8 Our first sampling of the delivery time for new product ideas. Each bar represents a delivered
product idea and the vertical scale days it took to deliver it. An upper control limit of 105 means 95
out of 100 product ideas will get delivered before 105 days.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

UCL 105

Average: 70

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 21 / 34

Striking an agreement of the latest point of commitment for new

product ideas

This information was used to strike the agreement with marketing of the latest

commitment point for new product ideas.

This allowed us to simplify responsibilities: Marketing could focus on figuring out

what next product idea to pull in, 105d before it needed to roll out. We would make

it our job to deliver it before that time frame. It also allowed us to clarify that no

longer would it be ok to puǎƘ ƛƴ ǇǊƻŘǳŎǘ ƛŘŜŀǎ άŦǊƻƳ ǘƘŜ ǎƛŘŜέ, because later changes

would jeopardize the quality of this and other ongoing product ideas.

But size matters! Right ?

IΩƳ ŦǊŜǉǳŜƴǘƭȅ ŎƻƴŦǊƻƴǘŜŘ ǿƛǘƘ ǘƘŜ ŀǊƎǳƳŜƴǘ άbut we need upfront estimation, some

items are bigger ǘƘŀƴ ƻǘƘŜǊǎέΦ Indeed that is true ς some items are bigger. And if you

look at the chart some bars taller than others, thus taking longer time to deliver. The

interesting question becomes: How does this correlate with the upfront estimation

done by developers?

We do a very simple T-Shirt like bucket type sizing before development begins.

Small = 2-3 days

Medium = 1-3 weeks

Large > 1 month

.Ŝƭƻǿ ȅƻǳΩƭƭ ŦƛƴŘ ŀ Ǉƭƻǘ ŎƻǊǊŜƭŀǘƛƴƎ the initial sizing estimates against the lead time

output. Have a look; is the initial sizing a good predictor for when you can get your

stuff?

In our case, the surprising truth was ΨnoΩ. But there are factors that affect the time to

ship. In our case the more dominant factors where: wait time for release, wait time

to get access to specialized skills.

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Small

Medium

Large

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 22 / 34

Judging by the data above ǘƘŜ ŀǊƎǳƳŜƴǘ ŎƻǳƭŘ ōŜ ǊŀƛǎŜŘ ǘƘŀǘ ǘƘŀǘ ǘƘŜǊŜΩǎ ƛƴ ǊŜŀƭity

ƻƴƭȅ ƻƴŜ ŜǎǘƛƳŀǘƛƻƴ ōǳŎƪŜǘ όƻǊ ǘǿƻΣ ƛŦ ȅƻǳ ŘƻƴΩǘ ƧǳŘƎŜ ǎŜŜ ƭƻƴƎŜǎǘ Řŀǘŀ Ǉƻƛƴǘ ƛǎ ŀ

random event).

Timeout ɀ How can I find my upper control limit (UCL)

An UCL is calculated such that a majority of events is expected to occur below its line.

The UCL reflects what degree of certainty you want to get for your predictions. You

can choose to be 95% certain (2s), 67% certain (1s), or 50% certain (aka average ς

not recommended..).

How big certainty you choose to opt for is up to you, I generally select UCL at 2s -

under which 95% of events are expected to occur.

Figure 9 A way to visualize UCL is to imagine a frequency distribution centered around mean. The
further away from the mean we move, the fewer occurrences we expect to find. Thus UCL represents
a cutoff point of the tail of the distribution.

The crude way of finding your UCL

There are statistical ways to calculate the upper control limit which L ǿƻƴΩǘ Ǝƻ

through here. But the dirt simple way of finding it, you can do manually. Make a

chart like the one above, using one bar for each lead time observation. Then draw a

line across the top of the bars skimming above the majority of them but cutting

across one. The level of certainty you will hit this number is roughly (number of bars

above the line) / (total number of bars).

It is a rough and crude, but ƛǘΩǎ ŀ good enough approximation especially if you are

under time pressure, have little data and need to make a call fast.

Please avoid the temptation to give delivery estimates based on the average lead

time. Remember the average implies 50% of your deliveries will be below this

number. A pretty low hit rate..

How we improved lead time ɀ step by step

The first challenge was to understand where the opportunities for improvements

where. To learn that we tracked the key components of lead time (waiting for dev,

UCL

Average
Distribution
around
mean

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 23 / 34

under development, waiting for system test, system testing). Our first lead time chart

was the one below.

Figure 10 Our first view on which components consumed lead time. A typical situation in a product
development ς making decisions with but a few data points. It is in situations like this where expertise
and context knowledge matters.

{ƻ ǿƘŀǘ ǎƘƻǳƭŘ ǿŜ ǎǘŀǊǘ ƛƳǇǊƻǾƛƴƎΚ ²Ŝ ǿŜǊŜ ƭŜŀƴƛƴƎ ǘƻǿŀǊŘǎ άǘŜǎǘ ǘƻ ǇǊƻŘǳŎǘƛƻƴέ

being our biggest improvement area, but as you see the data is not terribly

conclusive.

This is actually a typical situation in product development, you are moving forward

with rapid pace and under high degrees of uncertainty. We displayed this chart to

highlights the limitation of how much information you can read out from a chart. LǘΩǎ

in situations like these context understanding (seeing with own eyes) and experience

matters to make the right calls.

So to get context understanding, we needed to listen to the source close to the

problem. This meant walking over to the change management team and to find out

how they viewed the situation.

0

10

20

30

40

50

60

70

Analyzing lead time components

test to prod

dev to test

dev time

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 24 / 34

Hm. Sounds pretty much like a bottleneck right? Change management seemed like a

good point to focus our improvement efforts on.

Improving @ change management

The change management was a team of nine people working to roll out changes in

70+ systems with technology stacks dating back 30 years in test and production.

Obviously they had a lot to do.. After discussing with the management team in

change management we decided to attack the problem on three fronts:

¶ Introduce kanban in change management - enable them to work on the

high prio stuff, gain time to get the quality right, decrease stress and enable

teamwork.(ǎŜŜ ǎŜǇŀǊŀǘŜ ŀǊǘƛŎƭŜ άYŀƴōŀƴ in change ƳŀƴŀƎŜƳŜƴǘέ ŦƻǊ ǘƘŜ

full story)

¶ Stop doing late changes in the release - we struck an agreement between

dev and change management about when is the last time a change could

be accepted ς and keep it

¶ Engage developers in adding automated test scenarios to our system test

environment ς this would simplify testing and more importantly test

feedback

How we stopped doing late release changes

We had several examples of late changes being pushed in late, during the release

cycle. Obviously we lacked a common agreement between development and change

management, and even between change management team members when the

cutoff point for late changes really was.

We backtracked the quality efforts needed and conclude that this point was one

week before the release. That was the time required to run the key system tests.

Because of immense time pressure, late changes and inability for a single change

management agent to overview the status of the release, system tests were often

only partially run in order to move the release out in time. We needed to find a way

to change behavior to build quality in, instead of pushing quality out.

òWe are constantlystressedò
òI wish there where more

testsò

òLate changes in the release

are killing usò

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 25 / 34

IŜǊŜΩǎ ŀ ǘȅǇƛŎŀƭ ǎŎŜƴŀǊƛƻ ǿƘŜǊŜ ǇǊƻōƭŜƳ ǎƻƭǾƛƴƎ Ƴǳǎǘ ƛƴǾƻƭǾŜ ǎŜǾŜǊŀƭ ǇŀǊǘƛŜǎ ǘƻ ōŜ

successful. One single person/or function cannot make this happen single handed.

The only way this would work was if the agreement was kept and respected by all

parties - all development teams and all change agents.

 To visualize this we drew a timeline at the far end of the kanban board that included

the cutoff dates and we asked the change management team to update this for us

for each release.

Figure 11 The last point of change - visualizing the release timeline at the kanban board.

Hey - ÄÉÄÎȭÔ you have a process before?

The answer is yes! We had a very hefty and well documented process, that dictated

how things should happen. For example, the process stated that no change could

happen as late as four weeks before the release. But advances in technology and

different risk profiles for systems made people realize later changes were doable.

Just because it a process and it is documented does not mean it describes how work

really ƘŀǇǇŜƴǎΦ ¢Ƙƛǎ ƛǎ ǇŀǊǘ ƻŦ ǘƘŜ ōŜŀǳǘȅ ƻŦ ƪŀƴōŀƴΤ ƛǘ ŘŜǎŎǊƛōŜǎ ŀ ƭƛǾƛƴƎ ǇǊƻŎŜǎǎΣ άŀǎ

ƛǎέ right now, not as it was expected to work.

Breaking the last barrier ɀ letting the development teams release

themselves

We had a long term ambition that teams should be able to release themselves,

instead of waiting for the upcoming release window. If we made this happen, it

would give us a number of advantages:

Demo!Last point
of new code

1 week

2 days

Go / No Go
1 day

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 26 / 34

¶ Decrease average time waiting for system testing

¶ Smaller releases means simplifying solving quality issues

¶ Focus on releasing the product ǿƘŜƴ ƛǘΩǎ ǊƛƎƘǘ rather than because ƛǘΩǎ ǘƛƳŜ

¶ Remove the delay aggregation effect - a one day delay near the release

window instantaneously aggregates to 4 weeks (a full release window). If

the teams could release themselves - a one day delay would stay as one

day delay.

Making this change may sound simple in theory, but proved hard in practice. When

we started to discuss this idea with the developers and with change management,

the discussion derailed pretty quickly. Let me share two examples:

Situation #1:

Situation #2:

Ok.. Does that mean you

take on full release

responsibility including

24/7 support.

We would like

to release ourselves

Ahum.. no way..

Dev

Change

mgmnt

Dev

You mean root
access to all our

production servers??

Can we get access

to more than dev environments

to support releases?

Dev Sysadmin

Ahum.. no way..

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 27 / 34

Dismantling the problem

We found ourselves in a mental deadlock and a catch 22 situation. The way forward

was to break this down to small and very concrete steps that made sense.

1. .Ŝ ŎƭŜŀǊ ǿŜ ŀǊŜ ƴƻǘ ǘǊȅƛƴƎ ǘƻ ŘŜŎǊŜŀǎŜ ǉǳŀƭƛǘȅΦ LŦ ǿŜ Řƻ ǘƘƛǎ ƛǘΩǎ ǘƻ ƛƳǇǊƻǾŜ

quality.

2. Learn to respect the late change cutoff date

3. Get a dedicated change management team member for each team

4. Free up time - allow change management team members to spend 50% of

their time working alongside their development team

5. Clarify the expectations of the release work, create a release checklist

6. Find a sustainable way to give development teams access to test and

production environments allowing them to prepare releases and help

troubleshoot

7. Let teams make the call on when to release, outside normal release

window, then execute it with support of the change management person

8. Let teams do their own release, using the release checklist

We moved through these steps one at a time. We are at point 6. currently -in

October 2012 the first teams did changes outside the normal release window.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 28 / 34

How lead time improved ɀ crunching the data

[ŜǘΩǎ ƘŀǾŜ ŀ ƭƻƻƪ ŀt some of the data we collected, starting with the lead time:

Figure 12 Lead time for new product ideas. The two data points at the end mark tech debt stories.

As you can see, lead time is trending downwards. The two data points at the end are

Tech debt stories, aka improvements for keeping the pace up in the future. In our

case they were generally of high complexity and carried lower priority, this we can

expect lead time of tech debt stories to be longer.

Lead time per quarter

We get a better overview by visualizing lead time by quarter.

0

50

100

150

200

250

Lead time end to end flow

Tech debt

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 29 / 34

Figure 13 Lead time aggregated by quarter.

Here we can see that product ideas released through Q1 2013 got out roughly 2x

faster than product ideas released in Q3 2012. So, where did the improvement come

from? Was it the simple case of just better understanding how to handle new

technology?

Where we made up the improvement in lead time?

There are two components we can look at when we want to learn where the

improvement came ς waiting time and value adding time.

Analyzing waiting time

We can see how average waiting time is trending downwards. The higher up in each

bar, the later in the flow the waiting time (and the more costly it becomes).

0

10

20

30

40

50

60

70

jul12-sep12 okt12-dec12 jan13-mar13

Average time product idea spends
waiting

Waiting for cust. Usage

Waiting for test

Waiting for dev

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 30 / 34

We lacked separation of data between waiting for customer usage and making

customer adaptation. Therefore άǿŀƛǘƛƴƎ ŦƻǊ ŎǳǎǘƻƳŜǊ ǳǎŀƎŜέ όƛƴ ƎǊŜŜƴύ ƛƴŎƭǳŘŜǎ

both waiting and sometimes value adding time.

Analyzing value adding time

[ŜǘΩǎ ǘǳǊƴ ƻǳǊ ŜȅŜ ǘƻ ǾŀƭǳŜ ŀŘŘƛƴƎ ǘƛƳŜΦ

Figure 14 Value adding time separated into development and system testing.

Again we can see both time through development and test is dropping. The fact that

development time is decreasing can be because we know the technology better, but

we have also learned to prepare work and slice it better. But the biggest

improvement has happened in testing - time through system testing has actually

been reduced by a radical 7x.

But are we shipping things of value?

Flow matters little unless what we ship is of value. So how did we do in that

perspective?

If you recall the last section of the kanban ōƻŀǊŘ ȅƻǳΩƭƭ ƴƻǘŜ ǘƘŀǘ ƛt contained two

ǎŜŎǘƛƻƴǎΥ άǇƻǇǳƭŀǊ ŀǘ ŎǳǎǘƻƳŜǊέ ŀƴŘ άƻƘ ŎǊŀǇΗέΦ We collected statistics from these

sections to learn if we had delivered things of value. Below you find the aggregated

statistics:

0

20

40

60

80

100

jul12-sep12 okt12-dec12 jan13-mar13

Lead time through development and
system testing

Test time

Dev time

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 31 / 34

Figure 15 Customer value feedback. Sample size is 113.

Happy means customer liked it and uses it. Dev rework means we stopped it before

shipment, reworking the design before we deemed it satisfactory to ship to

customer. Customer rework means customer where not happy, sending it back to us

for redesign.

95%

3% 2%

Happy! (Customer + Us)

Dev rework

Customer rework

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 32 / 34

WhatȭÓ different? Comparing now and before

While we do not work as a single cross functional team, a lot more work is happening

in parallel today. Feedback cycles are faster. Before the first holistic feedback was

returned at the late stages of system testing, today it comes already when the

Concept is shared with the development teams.

Before

Figure 16 Before: Synchronous steps with handovers. Cross function communication revolves around
completing activity steps, holistic feedback returned late.

Communication content has changed. Before cross function communication (across

function borders) revolved around completing specific activities, as defined per

function. Cross function communication today revolves around what is needed to

make the product work. This not only more frequent communication, but also

different information is being exchanged.

Today

Figure 17 More work in parallel, cross function communication sharing what is needed to make the
product fly. Feedback is returned faster, first occasion is when concept is shared with development
teams and then continuously as the concept owner reviews and refines the work together with the
teams.

Teams & communication

Development ReleaseMarketing

Flow

?

<support
activity>

<support
activity>

<holistic product feedback >

Development

Teams & communication

Release

Marketing

Flow

<current
product

gap>

<current
product

gap>

<current
product

gap>

<holistic
product

feedback>

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 33 / 34

7ÈÁÔ ÈÁÓÎȭÔ ÃÈÁÎÇÅÄȩ

So far team structures ƘŀǾŜƴΩǘ shifted - teams still by large are organized in functions

along the stream (marketing, development, change management). Maybe this will

shift in the future, but that is yet to see.

 Enterprise kanban - a case study
 Mattias Skarin, 2013

 Page 34 / 34

Summing it up

How far can you get by doing evolutionary improvement before altering team

structures becomes necessary?

For us, we reached a 2x improvement in lead time over a period of 1,5 years. The

main bulk of this reduction is due to less waiting time, better approaches to system

testing, and better prepared inflow to development.

We have shown it is possible to let people passionate about ideas to run with them,

regardless of role. (We doƴΩǘ have the traditional roles of Product owners or Project

managers). We continuously learn how this affects quality and usefulness of what

we produce. For released products during the time period, 95% were reported value

adding and useful.

Enterprise Kanban, a quality first mindset, focus on flow, ownership of result,

teamwork and Concepts has helped us ƎŜǘ ǘƻ ǿƘŜǊŜ ǿŜ ŀǊŜ ǘƻŘŀȅΦ LǘΩǎ Ƙŀǎ ōŜŜƴ ŀ Ŧǳƴ

and sometimes bumpy ride, we are no way near the end yet and I look forward to

see how things move in the future.

Mattias Skarin, October 2013

